116 research outputs found

    Adaptive Entropy Coder Design Based on the Statistics of Lossless Video Signal

    Get PDF

    Line-based Intra Coding for High Quality Video Using H.264/AVC

    Get PDF

    Differential Pixel Value Coding for HEVC Lossless Compression

    Get PDF

    Efficient Differential Pixel Value Coding in CABAC for H.264/AVC Lossless Video Compression

    Get PDF
    Abstract Since context-based adaptive binary arithmetic coding (CABAC) as the entropy coding method in H.264/AVC was originally designed for lossy video compression, it is inappropriate for lossless video compression. Based on the fact that there are statistical differences of residual data between lossy and lossless video compression, we propose an efficient differential pixel value coding method in CABAC for H.264/AVC lossless video compression. Considering the observed statistical properties of the differential pixel value in lossless coding, we modified the CABAC encoding mechanism with the newly designed binarization table and the context-modeling method. Experimental results show that the proposed method achieves an approximately 12% bit saving, compared to the original CABAC method in the H.264/AVC standard

    Automatic Look-Up Table Based Real-Time Phase Unwrapping for Phase Measuring Profilometry and Optimal Reference Frequency Selection

    Get PDF
    For temporal phase unwrapping in phase measuring profilometry, it has recently been reported that two phases with co-prime frequencies can be absolutely unwrapped using a look-up table; however, frequency selection and table construction has been performed manually without optimization. In this paper, a universal phase unwrapping method is proposed to unwrap phase flexibly and automatically by using geometric analysis, and thus we can programmatically build a one-dimensional or two-dimensional look-up table for arbitrary two co-prime frequencies to correctly unwrap phases in real time. Moreover, a phase error model related to the defocus effect is derived to figure out an optimal reference frequency co-prime to the principal frequency. Experimental results verify the correctness and computational efficiency of the proposed method

    Universal Phase Unwrapping for Phase Measuring Profilometry Using Geometry Analysis

    Get PDF
    Traditionally temporal phase unwrapping for phase measuring profilometry needs to employ the phase computed from unit-frequency patterned images; however, it has recently been reported that two phases with co-prime frequencies can be absolutely unwrapped each other. However, a manually man-made look-up table for two known frequencies has to be used for correctly unwrapping phases. If two co-prime frequencies are changed, the look-up table has to be manually rebuilt. In this paper, a universal phase unwrapping algorithm is proposed to unwrap phase flexibly and automatically. The basis of the proposed algorithm is converting a signal-processing problem into a geometric analysis one. First, we normalize two wrapped phases such that they are of the same needed slope. Second, by using the modular operation, we unify the integer-valued difference of the two normalized phases over each wrapping interval. Third, by analyzing the properties of the uniform difference mathematically, we can automatically build a look-up table to record the corresponding correct orders for all wrapping intervals. Even if the frequencies are changed, the look-up table will be automatically updated for the latest involved frequencies. Finally, with the order information stored in the look-up table, the wrapped phases can be correctly unwrapped. Both simulations and experimental results verify the correctness of the proposed algorithm

    A HIERARCHICAL APPROACH TO ROTATION-INVARIANT TEXTURE FEATURE EXTRACTION BASED ON RADON TRANSFORM PARAMETERS

    Get PDF
    ABSTRACT In this paper, we propose an efficient hierarchical method for extracting invariant texture features using the Gabor wavelets and Radon transform parameters. The proposed method applies the Radon transform to estimate the directional information in the highband texture image extracted by Gabor wavelets. The directional information is then used to make the texture feature invariant to rotation. To show the efficiency of our scheme, we developed a texture-based image retrieval system based on the proposed method and evaluated it on a set of images from the Brodatz album. Experimental results show that the proposed system outperforms previous rotation-invariant systems significantly

    A Novel Macroblock Level Rate Control Method for Stereo Video Coding

    Get PDF
    To compress stereo video effectively, this paper proposes a novel macroblock (MB) level rate control method based on binocular perception. A binocular just-notification difference (BJND) model based on the parallax matching is first used to describe binocular perception. Then, the proposed rate control method is performed in stereo video coding with four levels, namely, view level, group-of-pictures (GOP) level, frame level, and MB level. In the view level, different proportions of bitrates are allocated for the left and right views of stereo video according to the prestatistical rate allocation proportion. In the GOP level, the total number of bitrates allocated to each GOP is computed and the initial quantization parameter of each GOP is set. In the frame level, the target bits allocated to each frame are computed. In the MB level, visual perception factor, which is measured by the BJND value of MB, is used to adjust the MB level bit allocation, so that the rate control results in line with the human visual characteristics. Experimental results show that the proposed method can control the bitrate more accurately and get better subjective quality of stereo video, compared with other methods

    Improved Context-Based Adaptive Binary Arithmetic Coding over H.264/AVC for Lossless Depth Map Coding

    Get PDF
    Abstract-The depth map, which represents three-dimensional (3D) information, is used to synthesize virtual views in the depth image-based rendering (DIBR) method. Since the quality of synthesized virtual views highly depends on the quality of depth map, we encode the depth map under the lossless coding mode. The original context-based adaptive binary arithmetic coding (CABAC) that was originally designed for lossy texture coding cannot provide the best coding performance for lossless depth map coding due to the statistical differences of residual data in lossy and lossless depth map coding. In this letter, we propose an enhanced CABAC coding mechanism for lossless depth map coding based on the statistics of residual data. Experimental results show that the proposed CABAC method provides approximately 4% bit saving compared to the original CABAC in H.264/AVC
    corecore